Australian Category Seminar

On the monadicity of enriched categories with chosen colimits

Steve Lackยท27 January 1999

This talk was based on the paper of the same name, written with Max Kelly.

Abstract: There is a 2-category J-colim of small categories equipped with a choice of colimit for each diagram whose domain J lies in a given small class J of small categories, functors strictly preserving such colimits, and natural transformations. The evident forgetful 2-functor from J-colim to the 2-category Cat of small categories is known to be monadic. We extend this result by considering not just conical colimits, but general weighted colimits; not just ordinary categories but enriched ones; and not just small classes of colimits but large ones; in this last case we are forced to move from the 2-category V-Cat of small V-categories to V-categories living within some larger universe. In each case, the functors preserving the colimits in the usual ``up-to-isomorphism' sense are recovered as the pseudomorphisms between algebras for the 2-monad in question.

Back