Many well-known families of groups and semigroups have natural categorical analogues: e.g., full transformation categories, symmetric inverse categories, as well as categories of partitions, Brauer/Temperley-Lieb diagrams, braids and vines. This talk discusses presentations (by generators and relations) for such categories, utilising additional tensor/monoidal operations. The methods are quite general, and apply to a wide class of (strict) tensor categories with one-sided units.